
Event Based Programming

THE CHALLENGE OF QoS IN CONFIGURABLE
MESH NETWORKS

Nadine Shillingford

Department of Computer Science and
Engineering

University of Notre Dame

Thursday, 4:20 PM, Olin 169

 SwingDemo2: Implementing a Graphical User
Interface (GUI)
◦ Adding components to containers

◦ Layout Managers

◦ Event-driven programming

 Buttons, Mouse

◦ Drawing on a component (review)

◦ Applets

 Detailed instructions, lots of interaction with
partner and me

 Brief words about halfway through the class

 Due Thursday

 Containers like JFrame and JPanel have an
add(Component c) method

◦ Adds a new component to be drawn

◦ JFrame for the top-level container, JPanel to
organize subcomponents

 You control how the components are placed
on the window, and how they change when
the window is resized, with a LayoutManager

◦ You will experience FlowLayout and

BorderLayout today

n Team

01 duganje,popenhjc

02 kominet,davidsac

03 krachtkq,buqshank

04 lemmersj,beaversr

05 carvers

06 weavergg,wanstrnj

07 walthagd,amanb

08 cheungkt,woodhaal

09 pedzindm,foltztm

10 shinnsm,parasby

04

05

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201030-swingdemo2-teamXX

n Team

11 hugheyjm,hannumed

12 labarpr,eatonmi

13 smebaksg,mcgeevsa

14 correlbn,sheetsjr

15 breenjw,macshake

16 moravemj,ngop

17 runchemr

Check out SwingDemo2 from SVN

 We say what to draw

 Java windowing
library:
◦ Draws it

◦ Gets user input

◦ Calls back to us with
events

 We handle events
Hmm, donuts

Gooey

 Many kinds of events:
◦ Mouse pressed, mouse released, mouse moved, mouse

clicked, button clicked, key pressed, menu item selected, …

 We tell which event source we will listen to and add
our listener
◦ Sources: buttons, menu items, graphics area, …

 We create event listener objects
◦ that implement the right interface

◦ that handle the event as we wish

 Three key steps:

1. The JButton says which object(s) will respond when
the JButton is pressed.

2. The responding object(s) implements ActionListener.

3. This means that there is an actionPerformed method
that specifies what is to happen when the JButton is
pressed

public class ExampleButton extends JButton

implements ActionListener {

private ButtonAndMouseFrame frame;

public ExampleButton(ButtonAndMouseFrame frame) {

this.frame = frame;

this.setText("Grow");

this.addActionListener(this);

}

@Override

public void actionPerformed(ActionEvent buttonEvent) {

this.frame.grow();

}

}

1. JButton says that it

will respond to its own

button presses

2. Responder (this

JButton) declares that it

implements ActionListener

3. Responder (this JButton) implements the

required actionPerformed method, that says

what to do when the JButton is pressed

A JButton often refers to one or more other objects (here, the

ButtonAndMouseFrame) that it receives in its constructor and stores in a field.

Or we could write a separate void setFrame(frame) method instead! (See

buttonAndMouseExample in SwingDemo2 for the complete example.)

Who is generating

events?

Who responds to them?

 Button is the event source
 Panel has to respond to the event and therefore can easily listen for

events.

public TopPanel extends JPanel implements ActionListener {
private JButton changeColor;

…
public TopPanel(){

this.changeColor = new JButton(“Click to change color”);
this.changeColor.addActionListener(this);
this.add(changeColor);

}

public void actionPerformed(ActionEvent e){
//Change the background color of the panel

}
}

 Can save some work

 You are free to try them based on your past
reading, but I’ll demo tomorrow

